
   

Supplementary Material 

Photosynthetic entrainment of the circadian clock facilitates plant 
growth under environmental fluctuations: perspectives from an 
integrated model of phase oscillator and phloem transportation 

Takayuki Ohara*, Akiko Satake 

* Correspondence: Takayuki Ohara: t.ohara.63920@ees.hokudai.ac.jp 

1 Sucrose solution flux through phloem tubes 

Fluxes of sucrose solution and pure water were modeled as in previous studies that addressed the 
phloem transport of sucrose (Seki et al., 2015) or a flowering signal (florigen) (Satake et al., 2016). 
Modeling was based on the pressure-flow hypothesis, which states that the difference in hydrostatic 
pressure between the source and sink generates the solution flux (Münch, 1930). We assume that 
sucrose concentration is uniform within each tube, an approximation used in the previous studies to 
predict the realistic grain arrangement of rice (Seki et al., 2015) and various inflorescence structures 
observed in Arabidopsis thaliana mutants (Satake et al., 2016). The sucrose concentration in tube i (i 
∈ {0, ..., 5}; Fig. 1C) at time t is designated as gi(t). The phloem tubes are represented as rigid 
cylinders (Figs. 1A, B). The sets of the source leaf, tubes, and sink tissues are represented by symbols 
G, T, and Y, respectively, where G = {0}, T = {1, 2, 3}, and Y = {4, 5} (Figs. 1A-C). 

1.1 Sucrose flux as Hagen–Poiseuille flow 

Inertia of phloem sap flow is considered negligibly small compared to its viscosity (Thompson, 
2006); thus, sucrose solution flux Ji(t) can be calculated using the Hagen–Poiseuille equation: 

Ji (t) =
π
8ν

ri
4

li
(pk (t)− pi (t)) ,         (S1) 

where ν is the viscosity of phloem sap. ri and li are the radius and length of component i, respectively, 
and correspond to rT and lT (i ∈ T) and rY and lY (i ∈ Y) (Fig. 1B). pk(t) and pi(t) are the turgor 
pressures at the apex of component k and i, respectively (Fig. 1C). The turgor pressures are caused by 
the pure water flow between phloem and xylem, which is detailed below. We define the direction of 
the phloem sap so that it flows from component k to i when Ji(t) is positive, while it flows from 
component i to k when Ji(t) is negative. 

1.2 Phloem-xylem flow of pure water 

Pure water flows from (or toward) the phloem tube toward (or from) xylem due to osmosis, which is 
assumed to occur at the small side surface near the apex of each component (Fig. 1D). Water flux 
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wi(t) depends on the difference between the turgor pressure and the osmotic pressure: 

wi (t) =mAi (pi (t)− gi (t)RT ) ,         (S2) 

where m is per-area permeability, and Ai is the surface area of component i. Under the assumption of 
dilute solution, the osmotic pressure is calculated as gi(t)RT by the van’t Hoff equation, where R and 
T are the gas constant and absolute temperature, respectively. 

Because we assume that every cylinder is rigid, water efflux should be equal to water influx at 
each component (Fig. 1D). The conservation law of water volume is therefore held: 

0 = J1(t)+w0 (t) ,          (S3) 

J1(t) = J2 (t)+ J3(t)+w1(t) ,         (S4) 

Ji (t) = Ji+2 (t)+wi (t)  (i ∈ T \ {1}) ,        (S5) 

Ji (t) = wi (t)  (i ∈ Y) ,          (S6) 

Turgor pressure pi(t) is algebraically represented by solving a set of simultaneous linear equations 
(Eqs. (S1)-(S6)). pi(t) depends solely on the sucrose concentration in the phloem, the dynamics of 
which is formalized below. Sucrose flux Ji(t) is then calculated by substituting pi(t) into Eq. (S1). 

1.3 Sucrose dynamics in the phloem tube 

To describe the sucrose dynamics in the phloem, we introduce the symbol [x]+ meaning max{0, x}. 
Sucrose in component k is transported to component i when Ji(t) is positive. The amount of sucrose 
transported from k to i per unit time is given by gk(t)Ji(t). In contrast, when Ji(t) is negative, sucrose is 
transported from component i to k at an amount given by gi(t)(�Ji(t)). These two cases are integrated 
into the term gk(t)[Ji(t)]+ − gi(t)[−Ji(t)]+ (respectively, −gk(t)[Ji(t)]+ + gi(t)[−Ji(t)]+), which denotes the 
rate of the sucrose change due to the flux Ji(t) at component i (respectively, component k). By 
applying this consideration to each component, sucrose dynamics in the phloem are described by the 
following equations: 

d
dt
g1(t) =

1
V1
{g0 (t)[J1(t)]+ + g2 (t)[−J2 (t)]+ + g3(t)[−J3(t)]+ − g1(t)([−J1(t)]+ +[J2 (t)]+ +[J3(t)]+ )} , 

(S7) 

d
dt
gi (t) =

1
Vi

{g1(t)[Ji (t)]+ + gi+2 (t)[−Ji+2 (t)]+ − gi (t)([−Ji (t)]+ +[Ji+2 (t)]+ )}  (i ∈ T \ {1}) , (S8) 

where Vi represents the volume of the source (i ∈ G), the tubes (i ∈ T), and the sinks (i ∈ Y). The 
dynamics of gi(t) (i = 0, 4, and 5) are described by Eqs. (3) and (5) in the main text. 

2 Parameter estimation of the sugar input function 

Similar to a previous study (Seki et al., 2017), we define the sugar input function fS by the Hill 
equation: 
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fS ( !SG ) = sgn( !SG )
!SG

n

K n + !SG
n ,         (S9) 

where sgn is a sign function, and n and K are constants. The parameter values of K and n are 
determined for various values of the subjective dusk φ* using the procedure described in a previous 
study (Seki et al., 2017). 

3 Alternative formalization of growth rate 

In the main text, we define growth rate λα(SY) of the sink tissues as a nonlinear function of sucrose 
concentration (Eqs. (7) and (8)). Here we test the alternative formalization of growth rate as a linear 
function of sucrose. We assume that sucrose is consumed for growth at a rate α1 and that growth is 
repressed when sucrose falls below a threshold level. Based on these assumptions, the dynamics of 
sucrose SY and plant fresh weight WY are described by 

d
dt
SY(t) =ηYgi (t)− hYSY(t)−α1SY(t) ,        (S10) 

d
dt
WY(t) = λ(α1SY −α2[SY

* − SY]+ )WY(t) ,       (S11) 

where α2 is a parameter, SY
*  is a threshold constant, and the symbol [x]+ is defined as in Section 1.3 

above. The term λ(α1SY −α2[SY
* − SY]+ )  in Eq. (S11) is considered as the growth rate (Fig. S4A) and 

is referred to as “linear growth rate”. The growth rate in the main text is correspondingly referred to 
as “nonlinear growth rate”. When sucrose concentration is relatively low, the linear growth rate 
becomes negative (Fig. S4A), which corresponds to death of living tissues due to insufficient 
maintenance respiration. We estimated the values of α1 and α2 using procedures similar to those 
explained in Section 2.2.2 of the main text. We set SY

* = 0.9 . 

Similar to the results in the main text assuming the nonlinear growth with sucrose (Fig. 3), 10-day 
growth of the mutant is lower than the wild type and homeostatic plant under constant photoperiod 
conditions (Fig. S4B). However, the growth of all three plants in long photoperiods are closer using 
the linear growth rate than when computed using the nonlinear growth rate. Growth patterns are 
significantly altered by the change in formalization of the growth rate (Figs. S4C and D; Figs. 4C and 
5C), while the sugar dynamics are not (data not shown). Under a long day (16 L/ 8 D) with the linear 
growth rate, the very high sucrose level around dawn (Fig. 4B) strongly contributes to growth of the 
mutant, in contrast to the case using the nonlinear growth rate (Fig. S4C; Fig. 4C), because growth 
rate keeps increasing with sucrose concentration. This reduces the growth difference between the 
mutant and the others. Under a short day (8 L/ 16 D) with the linear growth rate, the overall growth 
trend is unchanged, but its baseline is higher compared to that with the nonlinear growth rate (Fig. 
S4D; Fig.5C) simply because of the higher growth rate at a sucrose level of about 0.8 (Fig. S4A and 
Fig. 5B). 
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When the plants are transferred from a short to a long photoperiod, the growth of the wild type 
and homeostatic plant are still greater than the mutant (Fig. S5A) as in the case for the nonlinear 
growth model. However, the mutant grows faster than the others when the plants are transferred from 
a long to a short photoperiod (Fig. S5B). Transient dynamics of the growth rates immediately after 
the photoperiod change from short to long (Fig. S5C) are similar to those assuming the nonlinear 
growth rate (Fig. 8B). On the other hand, when photoperiod changes from long to short (Fig. S5D) 
the growth rate is transiently higher in the mutant (around t = 0), lower in the wild type (around t = 
24), and almost the same in the homeostatic plant compared to the dynamics assuming the nonlinear 
growth rate (Fig. 8B). These changes in transient growth dynamics of the plants exposed to the long-
to-short day transition, in addition to the small growth difference among the plants in constant 
conditions, distinguish the overall growth from those described in the main text (Fig. S5B and Fig. 
8A).  



 5 

St
ar

ch
 d

eg
ra

da
tio

n
ra

te
 (β

)
Ph

as
e 

sh
ift

 (h
)

Phase φ (h)

φ*= 8h
φ*= 10h Subjective dusk φ*

Sugar-insensitive
Mutant Fixed

Wild type Fixed

Homeostatic Always equal to external 
photoperiod τL

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.02

0.04

0.06

0.08

0.10

0 2 4 6 8 10 12 14 16 18 20 22 24
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10

A

B

4 Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. (A) Starch degradation rate and (B) phase response curve to sucrose optimal for realizing 
sucrose homeostasis (Seki et al., 2017). Different colors correspond to different values of the 
subjective dusk φ*. How φ* is treated in the sugar-insensitive mutant, wild type, and homeostatic 
plant is summarized in the right table.  
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Figure S2. Growth difference among the mutant, wild type, and homeostatic plant under the change 
of parameter values. Changed parameters are represented above each group of three figures. Different 
colors correspond to the different extents of the parameter change shown at the top.  
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Figure S3. (A), (B), (C) Configurations of the phloem tubes used for computation of growth in the 
main text, (D), and (E), respectively. Black letters in each tube stand for the ratio of the tube lengths. 
(D), (E) 10-day growth of the sink of the mutant, wild type, and homeostatic plant. (F), (G) Growth 
difference among the plants based on the data in (D) and (E), respectively. In (D) and (F), the result 
for shoot apical meristem (SAM) only is shown because that of the root apical meristem (RAM) is 
almost the same, despite the length difference between tubes 2 and 3. 
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Figure S4. (A) Growth rate linearly dependent on sucrose (solid line). The growth rate formalized in 
the main text is also shown (dashed line). (B) 10-day growth of the sink (SAM or RAM) of the 
mutant, wild type, and homeostatic plant with the linear growth rate under constant photoperiod 
conditions, and the growth difference among the plants. (C), (D) Predicted profiles of the linear 
growth rate of the plants in a 16-h (C) and 8-h (D) photoperiod. The unit for sucrose is µmolC6 
g−1FW. White background: light period; Gray background: dark period. 
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Figure S5. (A), (B) Growth of the sink (SAM or RAM) of the mutant, wild type, and homeostatic 
plant with the linear growth rate transferred from an 8-h to 16-h photoperiod (A) and from a 16-h to 
8-h photoperiod (B) as well as the growth difference among the plants. Color codes as in Fig. S4B. 
(C), (D) Predicted profiles of the linear growth rate around the photoperiod change. Details are as in 
the legend to Fig. S4. 

 



   

5 Supplementary tables 

Table S1. Summary of parameters, variables, and functions. 

  Definition Units Value 

Parameters a Carbon capture rate µmolC6/gFW/hour 6 (Feugier and Satake, 2013) 

γ Carbon partitioning rate for starch  

0.68 (φ* = 8h) (Seki et al., 2017) 
0.64 (φ* = 9h) 

0.6 (φ* = 10, 11, 12h) (Seki et al., 
2017) 

κ Constant (starch degradation occurs in proportion to Cκ )  2/3 (Seki et al., 2017) 

hG Respiration rate in source 1/hour 0.79 (Feugier and Satake, 2013) 

hY Respiration rate in sink 1/hour 0.79 

ηG Sucrose loading rate 1/hour 1.98 (Feugier and Satake, 2013) 

ηY Sucrose unloading rate m3/hour 1.58 × 10−9 (Satake et al., 2016) 

ω Angular frequency of the circadian clock  1 (Seki et al., 2017) 

φ* Timing of subjective dusk Hour  

τL Photoperiod Hour  

K Half saturation constant of fS  

0.1 (φ* = 8h) (Seki et al., 2017) 
0.1 (φ* = 9h) † 
0.1 (φ* = 10h) (Seki et al., 2017) 
0.5 (φ* = 11h) † 
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0.3 (φ* = 12h) (Seki et al., 2017) 

 

n Constant determining the shape of fS  

0.5 (φ* = 8h) (Seki et al., 2017) 
1.4 (φ* = 9h) † 
1.0 (φ* = 10h) (Seki et al., 2017) 
1.2 (φ* = 11h) † 

3.0 (φ* = 12h) (Seki et al., 2017) 

αMax Saturation constant of α µmolC6/gFW/hour 7.6 × 10−6 † 

!K  Half saturation constant of α µmolC6/gFW 9.9 × 10−2 † 

!n  Constant determining the shape of α  6.9 † 

α1 Constant in the linear growth rate 1/hour 0.17 † 

α2 Constant in the linear growth rate 1/hour 0.23 † 

SY
*  Threshold constant in the linear growth rate µmolC6/gFW 0.9 

λ Conversion rate of sucrose to growth 1/µmolC6/gFW 1 

rG Cylinder radius of a tube in the source m 1.0 × 10−4 

rT Cylinder radius of a connecting tube m 1.0 × 10−4 

rY Cylinder radius of a tube in the sink m 1.0 × 10−5 

lG Cylinder height of a tube in the source m 1.0 × 10−2 

lT Cylinder height of a connecting tube m 
3.0 × 10−2 or 
6.0 × 10−2 (Fig. S3) 

lY Cylinder height of a tube in the sink m 2.0 × 10−2 

VX Volume of cylinder of type X m3 πrX
2lX  

AX Side surface area of cylinder of type X m2 2πrXlX  



  Supplementary Material 

 12 

ν Solution viscosity Pa s 8.9 × 10−4 (Seki et al., 2015) 

m Per area membrane permeability m/Pa/s 5.0 × 10−14 (Seki et al., 2015) 

R Gas constant J/K/mol 8.31 

T Air temperature K 298 

Variables SG Sucrose concentration in the source µmolC6/gFW  

SY Sucrose concentration in the sink µmolC6/gFW  

C Starch concentration µmolC6/gFW  

φ Phase of the circadian clock Hour  

WY Fresh weight of the sink g WY(0) = 5.0 × 10−4 

gi Sucrose concentration of component i µmolC6/gFW/m3  

pi Turgor pressure of component i Pa  

Functions L Light condition (1 under light; 0 under dark)   

β Starch degradation rate 1/hour  

ZS Continuous phase response curve to sugar signal   

fS Transformation function of sucrose signal   

α Sucrose consumption rate for growth µmolC6/gFW/hour  

Note: Parameters in general use (e.g., gas constant) are represented in SI units for clarity, which are used in numerical simulations with 
conversion of the units. The values marked with † are estimated in the current study. The remaining values are arbitrarily chosen because of 
the lack of empirical data. 
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